Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Mol Liq ; 363: 119867, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1937004

ABSTRACT

Thermally stable and labile proteases are found in microorganisms. Protease mediates the cleavage of polyproteins in the virus replication and transcription process. 6 µs MD simulations were performed for monomer/dimer SARS CoV-2 main protease system in both SPC/E and mTIP3P water model to analyse the temperature-dependent behaviour of the protein. It is found that maximum conformational changes are observed at 348 K which is near the melting temperature. Network distribution of evolved conformations shows an increase in the number of communities with the rise in the temperature. The global conformation of the protein was found to be intact whereas a local conformational space evolved due to thermal fluctuations. The global conformational change in the free energy ΔΔG value for the monomer and the dimer between 278 K and 383 K is found to be 2.51 and 2.10 kJ/mol respectively. A detailed analysis was carried out on the effect of water on the temperature-dependent structural modifications of four binding pockets of SARS CoV-2 main protease namely, catalytic dyad, substrate-binding site, dimerization site and allosteric site. It is found that the water structure around the binding sites is altered with temperature. The water around the dimer sites is more ordered than the monomer sites regardless of the rise in temperature due to structural rigidity. The energy expense of binding the small molecules at substrate binding is less compared to the allosteric site. The water-water hydrogen bond lifetime is found to be more near the cavity of His41. Also, it is observed that mTIP3P water molecules have a similar effect to that of SPC/E water molecules on the main protease.

2.
J Mol Graph Model ; 116: 108264, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1914640

ABSTRACT

The structural variation of RNA is often very transient and can be easily missed in experiments. Molecular dynamics simulation studies along with network analysis can be an effective tool to identify prominent conformations of such dynamic biomolecular systems. Here we describe a method to effectively sample different RNA conformations at six different temperatures based on the changes in the interhelical orientations. This method gives the information about prominent states of the RNA as well as the probability of the existence of different conformations and their interconnections during the process of evolution. In the case of the SARS-CoV-2 genome, the change of prominent structures was found to be faster at 333 K as compared to higher temperatures due to the formation of the non-native base pairs. ΔΔG calculated between 288 K and 363 K are found to be 10.31 kcal/mol (88 nt) considering the contribution from the multiple states of the RNA which agrees well with the experimentally reported denaturation energy for E. coli α mRNA pseudoknot (∼16 kcal/mol, 112 nt) determined by calorimetry/UV hyperchromicity and human telomerase RNA telomerase (4.5-6.6 kcal/mol, 54 nt) determined by FRET analysis.


Subject(s)
COVID-19 , Escherichia coli , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , SARS-CoV-2/genetics , Thermodynamics
3.
J Phys Chem B ; 125(38): 10672-10681, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1409764

ABSTRACT

Understanding the dynamics of the SARS CoV-2 RNA genome and its dependence on temperature is necessary to fight the current COVID-19 crisis. Computationally, the handling of large data is a major challenge in the elucidation of the structures of RNA. This work presents network analysis as an important tool to see the conformational evolution and the most dominant structures of the RNA genome at six different temperatures. It effectively distinguished different communities of RNA having structural variation. It is found that at higher temperatures (348 K and above), 80% of the RNA structure is destroyed in both the SPC/E and mTIP3P water models. The thermal denaturation free energy change ΔΔG value calculated for the long-lived structure at higher temperatures of 348 and 363 K ranges from 2.58 to 2.78 kcal/mol for the SPC/E water model, which agrees well with the experimentally reported thermal denaturation free energy range of 2.874 kcal/mol of SARS CoV-NP at normal pH. At higher temperatures, the stability of RNA conformation is found to be due to the existence of non-native base pairs in the SPC/E water model.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleic Acid Conformation , RNA , Temperature
4.
J Biomol Struct Dyn ; 40(11): 5112-5127, 2022 07.
Article in English | MEDLINE | ID: covidwho-1007468

ABSTRACT

Novel coronavirus (COVID-19) responsible for viral pneumonia which emerged in late 2019 has badly affected the world. No clinically proven drugs are available yet as the targeted therapeutic agents for the treatment of this disease. The viral main protease which helps in replication and transcription inside the host can be an effective drug target. In the present study, we aimed to discover the potential of ß-adrenoceptor agonists and adenosine deaminase inhibitors which are used in asthma and cancer/inflammatory disorders, respectively, as repurposing drugs against protease inhibitor by ligand-based and structure-based virtual screening using COVID-19 protease-N3 complex. The AARRR pharmacophore model was used to screen a set of 22,621 molecules to obtain hits, which were subjected to high-throughput virtual screening. Extra precision docking identified four top-scored molecules such as +/--fenoterol, FR236913 and FR230513 with lower binding energy from both categories. Docking identified three major hydrogen bonds with Gly143, Glu166 and Gln189 residues. 100 ns MD simulation was performed for four top-scored molecules to analyze the stability, molecular mechanism and energy requirements. MM/PBSA energy calculation suggested that van der Waals and electrostatic energy components are the main reasons for the stability of complexes. Water-mediated hydrogen bonds between protein-ligand and flexibility of the ligand are found to be responsible for providing extra stability to the complexes. The insights gained from this combinatorial approach can be used to design more potent and bio-available protease inhibitors against novel coronavirus.Communicated by Ramaswamy H. Sarma.


Subject(s)
Adenosine Deaminase Inhibitors , Adrenergic Agonists , Antiviral Agents , Coronavirus 3C Proteases , SARS-CoV-2 , Adenosine Deaminase Inhibitors/chemistry , Adenosine Deaminase Inhibitors/pharmacology , Adrenergic Agonists/chemistry , Adrenergic Agonists/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Drug Repositioning , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Receptors, Adrenergic , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
5.
J Phys Chem Lett ; 11(22): 9920-9930, 2020 Nov 19.
Article in English | MEDLINE | ID: covidwho-919398

ABSTRACT

The emergence of severe acute respiratory syndrome from novel Coronavirus (SARS-CoV-2) has put an immense pressure worldwide where vaccination is believed to be an efficient way for developing hard immunity. Herein, we employ immunoinformatic tools to identify B-cell, T-cell epitopes associated with the spike protein of SARS-CoV-2, which is important for genome release. The results showed that the highly immunogenic epitopes located at the stalk part are mostly conserved compared to the receptor binding domain (RDB). Further, two vaccine candidates were computationally modeled from the linear B-cell, T-cell epitopes. Molecular docking reveals the crucial interactions of the vaccines with immune-receptors, and their stability is assessed by MD simulation studies. The chimeric vaccines showed remarkable binding affinity toward the immune cell receptors computed by the MM/PBSA method. van der Waals and electrostatic interactions are found to be the dominant factors for the stability of the complexes. The molecular-level interaction obtained from this study may provide deeper insight into the process of vaccine development against the pandemic of COVID-19.


Subject(s)
COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Subunit/immunology , Amino Acid Sequence , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/metabolism , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/metabolism , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Subunit/chemistry , Vaccines, Subunit/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL